2018年度金沙9001cc以诚为本首页校内学术报告预告两则
时间:2018-09-17 08:49:35 来源: 作者: 阅读: 次
报告题目1:IB-LBM Based Numerical Simulations for Heat Transfer and Motion Characteristics of Particles in Multi-phase Flow with Multi-physical Fields
报告人: 柯春海 博士
报告时间:2018年9月18日(周二)16:30—17:00
报告地点:金沙9001cc以诚为本首页学术报告厅
报告摘要:Particulate-fluid interaction systems are ubiquitous in various industrial processes whereas present complex momentum or heat transfer characteristics. Most of the particles in these processes are non-spherical particles (such as, ellipsoid-shaped, cylinder-shaped, tablet-shaped, etc), non-spherical particulate-fluid interaction systems have its own characteristics and difficulties, which differ markedly from spherical particles. The unique geometry of non-spherical particles introduces more uncertainties than spherical particles in particle-particle or particle-fluid interactions for flow structure and mechanism, therefore, the multi-scale structure is more complex than the case of spherical particles in the multi-phase flow and heat transfer process, and there are still many problems worthy of further study. In this work, firstly, a 3D IB-LBM parallel numerical simulation platform for hot stationary particle-fluid coupling system is established, which is based on CPU-GPU heterogeneous computers. Secondly, the LBM-IBM-DEM numerical simulation platform for dynamic evolution process of dense fluid-particle system is established, and then the magnetic particles-fluid phase coupling in two-phase fluid modelling is carried out.
报告题目2:Geometric Flows and Some Related Problems
报告人: 曾凡奇 博士
报告时间:2018年9月18日(周二)17:00—17:30
报告地点:金沙9001cc以诚为本首页学术报告厅
报告摘要:In this thesis, we focus on the geometric analytic properties of several important geometric flows, including monotonicity of eigenvalues of geometric operators along the Ricci-Bourguignon flow, upper bounds or lower bounds on the first eigenvalue for the Finsler p-Laplacian operator and mean Finsler-Laplacian, Harnack estimates of a nonlinear heat equation for the Finsler-Laplacian and geometric properties of the mean curvature flow in Minkowski Spaces, etc.
柯春海,博士,2018年于湘潭大学数学与计算科学学院获理学博士学位,2018年入职信阳师范学院金沙9001cc以诚为本首页工作至今。在国内外重要学术期刊Applied Mathematical Modelling、Powder Technology、Computers & Fluids等发表学术论文8篇,其中SCI收录5篇。
曾凡奇,2012年本科毕业于黄淮学院信息与计算科学专业。2015年毕业于河南师范大学数学与信息科学学院,获得理学硕士学位。2018年毕业于同济大学数学科学学院,获得理学博士学位。主要从事几何分析的研究。在国内外重要学术期刊Science China Mathematics、Pacific Journal of Mathematics、Comptes Rendus Mathématique、Studia Mathematica等发表学术论文14篇,其中SCI收录10篇。
欢迎广大师生参加!
金沙9001cc以诚为本首页
2018年9月16日